Sparse representation-based synthetic aperture radar imaging
نویسندگان
چکیده
There is increasing interest in using synthetic aperture radar (SAR) images in automated target recognition and decision-making tasks. The success of such tasks depends on how well the reconstructed SAR images exhibit certain features of the underlying scene. Based on the observation that typical underlying scenes usually exhibit sparsity in terms of such features, this paper presents an image formation method that formulates the SAR imaging problem as a sparse signal representation problem. For problems of complex-valued nature, such as SAR, a key challenge is how to choose the dictionary and the representation scheme for effective sparse representation. Since features of the SAR reflectivity magnitude are usually of interest, the approach is designed to sparsely represent the magnitude of the complex-valued scattered field. This turns the image reconstruction problem into a joint optimisation problem over the representation of magnitude and phase of the underlying field reflectivities. The authors develop the mathematical framework for this method and propose an iterative solution for the corresponding joint optimisation problem. The experimental results demonstrate the superiority of this method over previous approaches in terms of both producing high-quality SAR images and exhibiting robustness to uncertain or limited data.
منابع مشابه
Fusion Algorithm of Optical Images and Sar with Svt and Sparse Representation
Due to the different imaging mechanism of optical image and Synthetic Aperture Radar (SAR) image, they have the large different characteristics between the images, so fusing optical image and SAR image with image fusion technology could complement advantages and be able to better interpret the scenes information. A fusion algorithm of Synthetic Aperture Radar and optical image with fast sparse ...
متن کاملReconstruction , autofocusing , moving targets , and compressed sensing ] Sparsity - Driven Synthetic Aperture Radar Imaging
Date of publication: 13 June 2014 T his article presents a survey of recent research on sparsity-driven synthetic aperture radar (SAR) imaging. In particular, it reviews 1) the analysis and synthesis-based sparse signal representation formulations for SAR image formation together with the associated imaging results, 2) sparsity-based methods for wide-angle SAR imaging and anisotropy characteriz...
متن کاملSparsity-Driven Synthetic Aperture Radar Imaging
This paper presents a survey of recent research on sparsity-driven synthetic aperture radar (SAR) imaging. In particular, it reviews (i) analysis and synthesis-based sparse signal representation formulations for SAR image formation together with the associated imaging results; (ii) sparsity-based methods for wide-angle SAR imaging and anisotropy characterization; (iii) sparsity-based methods fo...
متن کاملLogarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging
This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for I...
متن کاملRadar Imaging of Sidelobe Suppression Based on Sparse Regularization
Synthetic aperture radar based on the matched filter theory has the ability of obtaining two-dimensional image of the scattering areas. Nevertheless, the resolution and sidelobe level of SAR imaging is limited by the antenna length and bandwidth of transmitted signal. However, for sparse signals (direct or indirect), sparse imaging methods can break through limitations of the conventional SAR m...
متن کامل